Count Color
 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 40402 Accepted: 12186

Description

Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem.

There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:

1. "C A B C" Color the board from segment A to segment B with color C.
2. "P A B" Output the number of different colors painted between segment A and segment B (including).

In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.

Input

First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

Output

Ouput results of the output operation in order, each line contains a number.

Sample Input

```2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2
```

Sample Output

```2
1
```

Source

POJ Monthly--2006.03.26,dodo

```#include
#include
#include
#include
#include
#include

using namespace std;

struct node
{
int l,r;
int num;
} s[400010];

int vis[35];

void InitTree(int l,int r,int k)
{
s[k].l=l;
s[k].r=r;
s[k].num=1;
int mid=(l+r)/2;
if (l==r)
return ;
InitTree(l,mid,2*k);
InitTree(mid+1,r,2*k+1);
}

void UpdataTree(int l,int r,int c,int k)
{
if(s[k].l==l&&s[k].r==r)
{
s[k].num=c;
return;
}
if (s[k].num==c)
return;
if (s[k].num!=-1)//如果所查询的区间不是多种颜色
{
s[2*k].num=s[k].num;//更新区间的颜色
s[2*k+1].num=s[k].num;
s[k].num=-1;//-1表示该区间有多种颜色
}
int mid=(s[k].l+s[k].r)/2;
if (l>mid)
UpdataTree(l,r,c,2*k+1);
else if (r<=mid)
UpdataTree(l,r,c,2*k);
else
{
UpdataTree(l,mid,c,2*k);
UpdataTree(mid+1,r,c,2*k+1);
}
}

void SearchTree(int l,int r,int k)
{
if (s[k].num!=-1)
{
vis[s[k].num]=1;
return;
}
int mid=(s[k].l+s[k].r)/2;
if (r<=mid)
SearchTree(l,r,2*k);
else if (l>mid)
SearchTree(l,r,2*k+1);
else
{
SearchTree(l,mid,2*k);
SearchTree(mid+1,r,2*k+1);
}
}

int main()
{
int l,t,o,ans;
while (~scanf("%d%d%d",&l,&t,&o))
{
InitTree(1,l,1);
while (o--)
{
char ch;
int a,b,c;
getchar();
scanf("%c",&ch);
if (ch=='C')
{
scanf("%d%d%d",&a,&b,&c);
if (a>b)
swap(a,b);
UpdataTree(a,b,c,1);
}
else
{

scanf("%d%d",&a,&b);
if (a>b)
swap(a,b);
memset(vis,0,sizeof(vis));
SearchTree(a,b,1);
ans=0;
for (int i=1; i<=t; i++)
if (vis[i]==1)
ans++;
printf ("%d\n",ans);
}
}
}
return 0;
}
```