详细解读Linux系统中ntpq命令的使用

页面导航:首页 > 操作系统 > LINUX > 详细解读Linux系统中ntpq命令的使用

详细解读Linux系统中ntpq命令的使用

来源: 作者: 时间:2015-12-21 18:39 【

这篇文章主要介绍了Linux系统中ntpq命令的使用,ntpq命令可以用来处理各种时间之间的同步和换算,非常强大,需要的朋友可以参考下
这篇文章主要介绍了Linux系统中ntpq命令的使用,ntpq命令可以用来处理各种时间之间的同步和换算,非常强大,需要的朋友可以参考下

命令 "ntpq -q" 输出下面这样的一个表:


复制代码
代码如下:
remote refid st t when poll reach delay offset jitter
==============================================================================
LOCAL(0) .LOCL. 10 l 96h 64 0 0.000 0.000 0.000
*ns2.example.com 10.193.2.20 2 u 936 1024 377 31.234 3.353 3.096

更多细节
表头

  •     remote – 用于同步的远程节点或服务器。“LOCAL”表示本机 (当没有远程服务器可用时会出现)
        refid – 远程的服务器进行同步的更高一级服务器
        st – 远程节点或服务器的 Stratum(级别,NTP 时间同步是分层的)
        t – 类型 (u: unicast(单播) 或 manycast(选播) 客户端, b: broadcast(广播) 或 multicast(多播) 客户端, l: 本地时钟, s: 对称节点(用于备份), A: 选播服务器, B: 广播服务器, M: 多播服务器, 参见“Automatic Server Discovery“)
        when – 最后一次同步到现在的时间 (默认单位为秒, “h”表示小时,“d”表示天)
        poll – 同步的频率:rfc5905建议在 NTPv4 中这个值的范围在 4 (16秒) 至 17 (36小时) 之间(即2的指数次秒),然而观察发现这个值的实际大小在一个小的多的范围内 :64 (26 )秒 至 1024 (210 )秒
        reach – 一个8位的左移移位寄存器值,用来测试能否和服务器连接,每成功连接一次它的值就会增加,以 8 进制显示
        delay – 从本地到远程节点或服务器通信的往返时间(毫秒)
        offset – 主机与远程节点或服务器时间源的时间偏移量,offset 越接近于0,主机和 NTP 服务器的时间越接近(以方均根表示,单位为毫秒)
        jitter – 与远程节点同步的时间源的平均偏差(多个时间样本中的 offset 的偏差,单位是毫秒),这个数值的绝对值越小,主机的时间就越精确

字段的统计代码

表中第一个字符(统计代码)是状态标识(参见 Peer Status Word),包含 " ","x","-","#","+","*","o":

  •     " " – 无状态,表示:
            没有远程通信的主机
            "LOCAL" 即本机
            (未被使用的)高层级服务器
            远程主机使用的这台机器作为同步服务器
        “x” – 已不再使用
        “-” – 已不再使用
        “#” – 良好的远程节点或服务器但是未被使用 (不在按同步距离排序的前六个节点中,作为备用节点使用)
        “+” – 良好的且优先使用的远程节点或服务器(包含在组合算法中)
        “*” – 当前作为优先主同步对象的远程节点或服务器
        “o” – PPS 节点 (当优先节点是有效时)。实际的系统同步是源于秒脉冲信号(pulse-per-second,PPS),可能通过PPS 时钟驱动或者通过内核接口。

参考 .
refid

refid 有下面这些状态值

  •     一个IP地址 – 远程节点或服务器的 IP 地址
        .LOCL. – 本机 (当没有远程节点或服务器可用时)
        .PPS. – 时间标准中的“Pulse Per Second”(秒脉冲)
        .IRIG. – Inter-Range Instrumentation Group 时间码
        .ACTS. – 美国 NIST 标准时间 电话调制器
        .NIST. –美国 NIST 标准时间电话调制器
        .PTB. – 德国 PTB 时间标准电话调制器
        .USNO. – 美国 USNO 标准时间 电话调制器
        .CHU. – CHU (HF, Ottawa, ON, Canada) 标准时间无线电接收器
        .DCFa. – DCF77 (LF, Mainflingen, Germany) 标准时间无线电接收器
        .HBG. – HBG (LF Prangins, Switzerland) 标准时间无线电接收器
        .JJY. – JJY (LF Fukushima, Japan) 标准时间无线电接收器
        .LORC. – LORAN-C station (MF) 标准时间无线电接收器,注: 不再可用 (被 eLORAN 废弃)
        .MSF. – MSF (LF, Anthorn, Great Britain) 标准时间无线电接收器
        .TDF. – TDF (MF, Allouis, France)标准时间无线电接收器
        .WWV. – WWV (HF, Ft. Collins, CO, America) 标准时间无线电接收器
        .WWVB. – WWVB (LF, Ft. Collins, CO, America) 标准时间无线电接收器
        .WWVH. – WWVH (HF, Kauai, HI, America) 标准时间无线电接收器
        .GOES. – 美国静止环境观测卫星;
        .GPS. – 美国 GPS;
        .GAL. – 伽利略定位系统欧洲 GNSS;
        .ACST. – 选播服务器
        .AUTH. – 认证错误
        .AUTO. – Autokey (NTP 的一种认证机制)顺序错误
        .BCST. – 广播服务器
        .CRYPT. – Autokey 协议错误
        .DENY. – 服务器拒绝访问;
        .INIT. – 关联初始化
        .MCST. – 多播服务器
        .RATE. – (轮询) 速率超出限定
        .TIME. – 关联超时
        .STEP. – 间隔时长改变,偏移量比危险阈值小(1000ms) 比间隔时间 (125ms)大

操作要点

一个时间服务器只会报告时间信息而不会从客户端更新时间(单向更新),而一个节点可以更新其他同级节点的时间,结合出一个彼此同意的时间(双向更新)。

初次启动时:

    除非使用 iburst 选项,客户端通常需要花几分钟来和服务器同步。如果客户端在启动时时间与 NTP 服务器的时间差大于 1000 秒,守护进程会退出并在系统日志中记录,让操作者手动设置时间差小于 1000 秒后再重新启动。如果时间差小于 1000 秒,但是大于 128 秒,会自动矫正间隔,并自动重启守护进程。

    当第一次启动时,时间频率文件(通常是 ntp.drift 文件,记录时间偏移)不存在,守护进程进入一个特殊模式来矫正频率。当时钟不符合规范时这会需要 900 秒。当校正完成后,守护进程创建时间频率文件进入普通模式,并分步校正剩余的偏差。

NTP 0 层(Stratum 0 )的设备如原子钟(铯,铷),GPS 时钟或者其他标准时间的无线电时钟为 1 层(Stratum 1)的时间服务器提供时间信号。NTP 只报告UTC 时间(统一协调时,Coordinated Universal Time)。客户端程序使用时区从 UTC 导出本地时间。

NTP 协议是高精度的,使用的精度小于纳秒(2的 -32 次方)。主机的时间精度和其他参数(受硬件和操作系统限制)使用命令 “ntpq -c rl” 查看(参见 rfc1305 通用变量和 rfc5905)。
“ntpq -c rl”输出参数

  •     precision 为四舍五入值,且为 2 的幂数。因此精度为 2precision (秒)
        rootdelay – 与同步网络中主同步服务器的总往返延时。注意这个值可以是正数或者负数,取决于时钟的精度。
        rootdisp – 相对于同步网络中主同步服务器的偏差(秒)
        tc – NTP 算法 PLL (phase locked loop,锁相环路) 或 FLL (frequency locked loop,锁频回路) 时间常量
        mintc – NTP 算法 PLL/FLL 最小时间常亮或“最快响应
        offset – 由结合算法得出的系统时钟偏移量(毫秒)
        frequency – 系统时钟频率
        sys_jitter – 由结合算法得出的系统时钟平均偏差(毫秒)
        clk_jitter – 硬件时钟平均偏差(毫秒)
        clk_wander – 硬件时钟偏移(PPM – 百分之一)

Jitter (也叫 timing jitter) 表示短期变化大于10HZ 的频率, wander 表示长期变化大于10HZ 的频率 (Stability 表示系统的频率随时间的变化,和 aging, drift, trends 等是同义词)
操作要点(续)

NTP 软件维护一系列连续更新的频率变化的校正值。对于设置正确的稳定系统,在非拥塞的网络中,现代硬件的 NTP 时钟同步通常与 UTC 标准时间相差在毫秒内。(在千兆 LAN 网络中可以达到何种精度?)

对于 UTC 时间,闰秒 leap second 可以每两年插入一次用于同步地球自传的变化。注意本地时间为夏令时时时间会有一小时的变化。在重同步之前客户端设备会使用独立的 UTC 时间,除非客户端使用了偏移校准。
闰秒发生时会怎样

    闰秒发生时,会对当天时间增加或减少一秒。闰秒的调整在 UTC 时间当天的最后一秒。如果增加一秒,UTC 时间会出现 23:59:60。即 23:59:59 到 0:00:00 之间实际上需要 2 秒钟。如果减少一秒,时间会从 23:59:58 跳至 0:00:00 。另见 .

Tags:

文章评论

最 近 更 新
热 点 排 行
Js与CSS工具
代码转换工具

<