多层自编码器手写版

发布时间:2022-06-27 发布网站:脚本宝典
脚本宝典收集整理的这篇文章主要介绍了多层自编码器手写版脚本宝典觉得挺不错的,现在分享给大家,也给大家做个参考。

 

#导入实验需要的包
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
From mpl_toolkITs.mplot3d import Axes3D
from matplotlib import cm
import numpy as np
# torch.manual_seed(1)    # rePRoducible

#超参数
# HyPEr Parameters
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005         # learning rate
DOWNLOAD_MNIST = True
N_test_img = 5

#下载数据集
# Mnist digits dataset
train_dataset = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),
    download=DOWNLOAD_MNIST,                        # download it if you don't have it
)

# plot one example
print(train_dataset.train_data.size())     # (60000, 28, 28)
print(train_dataset.train_labels.size())   # (60000)
plt.imshow(train_dataset.train_data[2].numpy(), cmap='gray')
plt.title('%i' % train_dataset.train_labels[2])
plt.show()

# Data Loader for easy mini-batch return in training, the image batch Shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)

#模型
class AutoEncoder(nn.Module):
    def __init__(self):
        super(AutoEncoder, self).__init__()

        self.encoder = nn.Sequential(
            nn.Linear(28*28, 128),
            nn.Tanh(),
            nn.Linear(128, 64),
            nn.Tanh(),
            nn.Linear(64, 12),
            nn.Tanh(),
            nn.Linear(12, 3),   # comPress to 3 features which can be Visualized in plt
        )
        self.decoder = nn.Sequential(
            nn.Linear(3, 12),
            nn.Tanh(),
            nn.Linear(12, 64),
            nn.Tanh(),
            nn.Linear(64, 128),
            nn.Tanh(),
            nn.Linear(128, 28*28),
            nn.Sigmoid(),       # compress to a range (0, 1)
        )

    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return encoded, decoded


autoencoder = AutoEncoder().cuda()
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss()

# initialize figure
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
plt.ion()   # continuously plot

# original data (First row) for viewing
view_data = train_dataset.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
for i in range(N_TEST_IMG):
    a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())

for epoch in range(EPOCH):
    for step, (x, b_label) in enumerate(train_loader):
        b_x = x.view(-1, 28*28).cuda()   # batch x, shape (batch, 28*28)
        b_y = x.view(-1, 28*28).cuda()   # batch y, shape (batch, 28*28)

        encoded, decoded = autoencoder(b_x)

        loss = loss_func(decoded, b_y)      # mean square error
        optimizer.zero_grad()               # clear gradients for this training step
        loss.backward()                     # backpropagation, compute gradients
        optimizer.step()                    # apply gradients

        if step % 100 == 0:
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())

            # plotting decoded image (second row)
            _, decoded_data = autoencoder(view_data)
            for i in range(N_TEST_IMG):
                a[1][i].clear()
                a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                a[1][i].set_xticks(()); a[1][i].set_yticks(())
            plt.draw(); plt.pause(0.05)

plt.ioff()
plt.show()

# visualize in 3D plot
view_data = train_dataset.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
encoded_data, _ = autoencoder(view_data)
fig = plt.figure(2); ax = Axes3D(fig)
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values = train_dataset.train_labels[:200].numpy()
for x, y, z, s in zip(X, Y, Z, values):
    c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
plt.show()

 

#导入实验需要的包import torchimport torch.nn as nnimport torch.utils.data as Dataimport torchvisionimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmimport numpy as np# torch.manual_seed(1)    # reproducible#超参数# Hyper ParametersEPOCH = 10BATCH_SIZE = 64LR = 0.005         # learning rateDOWNLOAD_MNIST = TrueN_TEST_IMG = 5#下载数据集# Mnist digits datasettrain_dataset = torchvision.datasets.MNIST(    root='./mnist/',train=True,                                     # this is training datatransform=torchvision.transforms.ToTensor(),download=DOWNLOAD_MNIST,                        # download it if you don't have it)# plot one exampleprint(train_dataset.train_data.size())     # (60000, 28, 28)print(train_dataset.train_labels.size())   # (60000)plt.imshow(train_dataset.train_data[2].numpy(), cmap='gray')plt.title('%i' % train_dataset.train_labels[2])plt.show()# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)train_loader = Data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)#模型class AutoEncoder(nn.Module):    def __init__(self):        super(AutoEncoder, self).__init__()        self.encoder = nn.Sequential(            nn.Linear(28*28, 128),nn.Tanh(),nn.Linear(128, 64),nn.Tanh(),nn.Linear(64, 12),nn.Tanh(),nn.Linear(12, 3),   # compress to 3 features which can be visualized in plt)        self.decoder = nn.Sequential(            nn.Linear(3, 12),nn.Tanh(),nn.Linear(12, 64),nn.Tanh(),nn.Linear(64, 128),nn.Tanh(),nn.Linear(128, 28*28),nn.Sigmoid(),       # compress to a range (0, 1))    def forward(self, x):        encoded = self.encoder(x)        decoded = self.decoder(encoded)        return encoded, decodedautoencoder = AutoEncoder().cuda()optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)loss_func = nn.MSELoss()# initialize figuref, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))plt.ion()   # continuously plot# original data (first row) for viewingview_data = train_dataset.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.for i in range(N_TEST_IMG):    a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())for epoch in range(EPOCH):    for step, (x, b_label) in enumerate(train_loader):        b_x = x.view(-1, 28*28).cuda()   # batch x, shape (batch, 28*28)b_y = x.view(-1, 28*28).cuda()   # batch y, shape (batch, 28*28)encoded, decoded = autoencoder(b_x)        loss = loss_func(decoded, b_y)      # mean square erroroptimizer.zero_grad()               # clear gradients for this training steploss.backward()                     # backpropagation, compute gradientsoptimizer.step()                    # apply gradientsif step % 100 == 0:            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())            # plotting decoded image (second row)_, decoded_data = autoencoder(view_data)            for i in range(N_TEST_IMG):                a[1][i].clear()                a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')                a[1][i].set_xticks(()); a[1][i].set_yticks(())            plt.draw(); plt.pause(0.05)plt.ioff()plt.show()# visualize in 3D plotview_data = train_dataset.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.encoded_data, _ = autoencoder(view_data)fig = plt.figure(2); ax = Axes3D(fig)X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()values = train_dataset.train_labels[:200].numpy()for x, y, z, s in zip(X, Y, Z, values):    c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())plt.show()

脚本宝典总结

以上是脚本宝典为你收集整理的多层自编码器手写版全部内容,希望文章能够帮你解决多层自编码器手写版所遇到的问题。

如果觉得脚本宝典网站内容还不错,欢迎将脚本宝典推荐好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
如您有任何意见或建议可联系处理。小编QQ:384754419,请注明来意。