Java十大排序算法

发布时间:2022-06-29 发布网站:脚本宝典
脚本宝典收集整理的这篇文章主要介绍了Java十大排序算法脚本宝典觉得挺不错的,现在分享给大家,也给大家做个参考。

1.概述

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
  • 不稳定:如果a原本在b前面,而a=b,排序之后a有可能会出现在b的后面;
  • 内排序:所有排序操作都在内存中完成;
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
  • @R_298_1304@:描述算法运行时间的函数,用大O符号表述;
  • 空间复杂度:描述算法所需要的内存空间大小。

2.时间复杂度空间复杂度

Java十大排序算法

3.十大常用排序算法

Java十大排序算法

常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。

在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为LOGN次,所以平均时间复杂度为O(nlogn)。

比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。

计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。

非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。

非比较排序的时间复杂度低,但由于非比较排序需要占用空间来确定唯一的位置。所以对数据规模和数据分布有一定的要求。

3.1 冒泡排序

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

3.1.1 基本思想

比较相邻的元素。如果第一个比第二个大,就交换它们两个; 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; 针对所有的元素重复以上的步骤,除了最后一个; 重复步骤1~3,直到排序完成。

3.1.2 图形

Java十大排序算法

Java十大排序算法

3.1.3 代码1

点击查看代码
	/**
	 * 冒泡排序
	 * @param array
	 * @return
	 */
	public static int[] bubbleSort(int[] array){
		if(array.length > 0){
			for(int i = 0;i<array.length;i++){
				for(int j = 0;j<array.length - 1 - i;j++){
					if(array[j] > array[j+1]){
						int temp = array[j];
						array[j] = array[j+1];
						array[j+1] = temp;
					}
				}
			}
		}
		return array;
	}

3.1.4 优化代码2

加一个标志位,当某一趟冒泡排序没有元素交换时,则冒泡结束,元素已经有序,可以有效的减少冒泡次数。

点击查看代码
import java.util.*;

public class BubbleSort {
    public int[] bubbleSort(int[] A, int n) {
        //冒泡排序:从后往前(从下往上)就像冒泡一样
        //用flag作为标记,标记数组是否已经排序完成
        boolean flag = true;
        //固定左边的数字
        for(int i=0; i<n-1&flag; i++){
            flag = false;
            //从后面(下面)往前(上)遍历
            for(int j=n-2;j>=i;j--){

                if(A[j]>A[j+1]){
                    swap(A,j,j+1);
                    flag = true;
                }
            }
        }

        return A;

    }
    //数组是按引用传递,在函数中改变数组起作用
    PRivate void swap(int[] A,int i,int j){
        int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    }
}

3.2 选择排序

表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

3.2.1 基本思想

  • 初始状态:无序区为R[1..n],有序区为空;
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  • n-1趟结束,数组有序化了。-

3.2.2 图形

Java十大排序算法

Java十大排序算法

3.2.3 代码1

代码实现: 首先确定循环次数,并且记住当前数字和当前位置。 将当前位置后面所有的数与当前数字进行对比,小数赋值给key,并记住小数的位置。 比对完成后,将最小的值与第一个数的值交换。

点击查看代码
public void selectSort(int[]a){
        int len=a.length;
        for(int i=0;i<len;i++){//循环次数
            int value=a[i];
            int posITion=i;
            for(int j=i+1;j<len;j++){//找到最小的值和位置
                if(a[j]<value){
                    value=a[j];
                    position=j;
                }
            }
            a[position]=a[i];//进行交换
            a[i]=value;
        }
    }

3.2.4 代码2

【初始升序】:交换0次,时间复杂度为o(n); 【初始降序】:交换n-1次,时间复杂度为o(n^2)。 【特点】:交换移动数据次数少,比较次数多。

点击查看代码
import java.util.*;
/**

**/
public class SelectionSort {
    public int[] selectionSort(int[] A, int n) {
       //简单选择排序算法,排序结果为递增数组
        //记录最小下标值
        int min=0;
        //固定左边的数字
        for(int i=0; i<A.length-1;i++){
            min = i;
            //找到下标i开始后面的最小值
            for(int j=i+1;j<A.length;j++){

                 if(A[min]>A[j]){
                     min = j;
                 }
            }
           //确保稳定排序,数值相等就不用交换
            if(i!=min){
                swap(A,i,min);
            }
        }

        return A;

    }

    //数组是按引用传递,在函数中改变数组起作用
    private void swap(int[] A,int i,int j){
        int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    }

}

3.3 插入排序

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

3.3.1 基本思想

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。

3.3.2 图形

Java十大排序算法

Java十大排序算法

3.3.3 代码1

点击查看代码
public void insertSort(int [] a){
        int len=a.length;//单独把数组长度拿出来,提高效率
        int insertNum;//要插入的数
        for(int i=1;i<len;i++){//因为第一次不用,所以从1开始
            insertNum=a[i];
            int j=i-1;//序列元素个数
            while(j>=0&&a[j]>insertNum){//从后往前循环,将大于insertNum的数向后移动
                a[j+1]=a[j];//元素向后移动
                j--;
            }
            a[j+1]=insertNum;//找到位置,插入当前元素
        }
    }

3.3.3 代码2

点击查看代码
import java.util.*;

public class InsertionSort {
    public int[] insertionSort(int[] A, int n) {
      //用模拟插入扑克牌的思想
        //插入的扑克牌
        int i,j,temp;
        //已经插入一张,继续插入
        for(i=1;i<n;i++){

            temp = A[i];
            //把i前面所有大于要插入的牌的牌往后移一位,空出一位给新的牌
            for(j=i;j>0&&A[j-1]>temp;j--){
                A[j] = A[j-1];
            }
            //把空出来的一位填满插入的牌
            A[j] = temp;

        }
        return A;


    }
}

3.4 希尔排序(插入排序变种版)

希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

3.4.1 基本思想

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

3.4.2 图形

Java十大排序算法

Java十大排序算法

Java十大排序算法

3.4.3 代码1

点击查看代码
public void sheelSort(int [] a){
        int len=a.length;//单独把数组长度拿出来,提高效率
        while(len!=0){
            len=len/2;
            for(int i=0;i<len;i++){//分组
                for(int j=i+len;j<a.length;j+=len){//元素从第二个开始
                    int k=j-len;//k为有序序列最后一位的位数
                    int temp=a[j];//要插入的元素
                    /*for(;k>=0&&temp<a[k];k-=len){
                        a[k+len]=a[k];
                    }*/
                    while(k>=0&&temp<a[k]){//从后往前遍历
                        a[k+len]=a[k];
                        k-=len;//向后移动len位
                    }
                    a[k+len]=temp;
                }
            }
        }
    }

3.4.3 代码2

点击查看代码
    /**
     * 希尔排序
     * @param array
     * @return
     */
    public static int[] shellSort(int[] array){undefined
    
        if(array.length > 0){    
            int len = array.length;
            int gap = len / 2;
            while(gap > 0){undefined
                for(int i = gap;i < len;i++){undefined
                    int temp = array[i];
                    int index = i - gap;
                    while(index >= 0 && array[index] > temp){undefined
                        array[index + gap] = array[index];
                        index -= gap;
                    }
                    array[index + gap] = temp;
                }            
                gap /= 2;
            }

        }
        return array;
    }    

3.4.3 代码3

点击查看代码

import java.util.*;

public class ShellSort {
    public int[] shellSort(int[] A, int n) {
        //要插入的纸牌
        int temp,j,i;
        //设定增量D,增量D/2逐渐减小
        for(int D = n/2;D>=1;D=D/2){

            //从下标d开始,对d组进行插入排序
            for(j=D;j<n;j++){

                temp = A[j];
                for(i=j;i>=D&&A[i-D]>temp;i-=D){
                    A[i]=A[i-D];
                }

                A[i]=temp;
            }

        }

        return A;
    }
}

3.5 归并排序

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

3.5.1 基本思想

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

3.5.2 图形

Java十大排序算法

Java十大排序算法

Java十大排序算法

Java十大排序算法

3.5.3 代码1

点击查看代码
public  void mergeSort(int[] a, int left, int right) {
           int t = 1;// 每组元素个数
           int size = right - left + 1;
           while (t < size) {
               int s = t;// 本次循环每组元素个数
               t = 2 * s;
               int i = left;
               while (i + (t - 1) < size) {
                   merge(a, i, i + (s - 1), i + (t - 1));
                   i += t;
               }
               if (i + (s - 1) < right)
                   merge(a, i, i + (s - 1), right);
           }
        }

        private static void merge(int[] data, int p, int q, int r) {
           int[] B = new int[data.length];
           int s = p;
           int t = q + 1;
           int k = p;
           while (s <= q && t <= r) {
               if (data[s] <= data[t]) {
                   B[k] = data[s];
                   s++;
               } else {
                   B[k] = data[t];
                   t++;
               }
               k++;
           }
           if (s == q + 1)
               B[k++] = data[t++];
           else
               B[k++] = data[s++];
           for (int i = p; i <= r; i++)
               data[i] = B[i];
        }

3.5.3 代码2

点击查看代码
	/**
	 * 2路归并算法
	 * @param array
	 * @return
	 */
	public static int[] MergeSort(int[] array){
		if(array.length < 2){
			return array;
		}
		int mid = array.length /2;
		int[] left = Arrays.copyOfRange(array, 0, mid);
		int[] right = Arrays.copyOfRange(array, mid, array.length);
		return merge(MergeSort(left),MergeSort(right));	
	}
	
	public static int[] merge(int[] left,int[] right){
		int[] result = new int[left.length + right.length];
		for(int index = 0,i = 0, j = 0;index < result.length;index++){
			if(i >= left.length){
				result[index] = right[j++];
			}else if(j >= right.length){
				result[index] = left[i++];
			}else if(left[i] > right[j]){
				result[index] = right[j++];
			}else{
				result[index] = left[i++];
			}
		}
		return result;
		
	}

3.5.3 代码3

点击查看代码
import java.util.*;

public class MergeSort {
    public int[] mergeSort(int[] A, int n) {
       //归并排序,递归做法,分而治之

        mSort(A,0,n-1);
        return A;
    }

    private void mSort(int[] A,int left,int right){
        //分而治之,递归常用的思想,跳出递归的条件
        if(left>=right){
            return;
        }
        //中点
        int mid = (left+right)/2;
        //有点类似后序遍历!
        mSort(A,left,mid);
        mSort(A,mid+1,right);

        merge(A,left,mid,right);



    }

    //将左右俩组的按序子序列排列成按序序列
    private void merge(int[] A,int left,int mid,int rightEnd){
        //充当tem数组的下标
        int record = left;
        //最后复制数组时使用
        int record2 = left;
        //右子序列的开始下标
        int m =mid+1;
        int[] tem = new int[A.length];

        //只要left>;mid或是m>rightEnd,就跳出循环
        while(left<=mid&&m<=rightEnd){

            if(A[left]<=A[m]){

                tem[record++]=A[left++];
            }else{
                tem[record++]=A[m++];
            }

        }
        while(left<=mid){
            tem[record++]=A[left++];
        }
        while(m<=rightEnd){
            tem[record++]=A[m++];
        }
        //复制数组
        for( ;record2<=rightEnd;record2++){
            A[record2] = tem[record2];
        }

    }

}


3.6 快速排序

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

3.6.1 基本思想

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

3.6.2 图形

Java十大排序算法

Java十大排序算法

Java十大排序算法

3.6.3 代码1

点击查看代码
public void quicksort(int[]a,int start,int end){
           if(start<end){
               int baseNum=a[start];//选基准值
               int midNum;//记录中间值
               int i=start;
               int j=end;
               do{
                   while((a[i]<baseNum)&&i<end){
                       i++;
                   }
                   while((a[j]>baseNum)&&j>start){
                       j--;
                   }
                   if(i<=j){
                       midNum=a[i];
                       a[i]=a[j];
                       a[j]=midNum;
                       i++;
                       j--;
                   }
               }while(i<=j);
                if(start<j){
                    quickSort(a,start,j);
                }
                if(end>i){
                    quickSort(a,i,end);
                }
           }
       }

3.6.3 代码2

点击查看代码
	/**
	 * 快速排序算法
	 * @param array
	 * @param low
	 * @param hight
	 */
	public static void QuickSort(int[] array,int low,int hight){
		//if (array.length < 1 || low < 0 || hight >= array.length || low > hight) return null;
		if(low < hight){
			int privotpos = partition(array,low,hight);
			QuickSort(array,low,privotpos - 1);
			QuickSort(array,privotpos + 1,hight);			
		}
	
	}
	
	public static int partition(int[] array,int low,int hight){
		int privot = array[low];
		while(low < hight){
			while(low < hight && array[hight] >= privot) --hight;
			array[low] = array[hight];
			while(low < hight && array[low] <= privot) ++low;
			array[hight] = array[low];
		}
		array[low] = privot;
		return low;			
	}

3.6.3 代码3

点击查看代码
import java.util.*;

public class QuickSort {
    public int[] quickSort(int[] A, int n) {
        //快速排序

        qSort(A,0,n-1);

        return A;

    }
    public void qSort(int[] A,int left,int right){

         //枢轴
        int pivot;
        if(left<right){

            pivot = partition(A,left,right);

            qSort(A,left,pivot-1);
            qSort(A,pivot+1,right);

        }      

    }

    //优化选取一个枢轴,想尽办法把它放到一个位置,使它左边的值都比它小,右边的值都比它大
    public int partition(int[] A,int left,int right){

        //优化选取枢轴,采用三数取中的方法
        int pivotKey = median3(A,left,right);
        //从表的俩边交替向中间扫描
        //枢轴用pivotKey给备份了
        while(left<right){
           while(left<right&&A[right]>=pivotKey){
               right--;
           }
            //用替换方式,因为枢轴给备份了,多出一个存储空间
            A[left]=A[right];
           while(left<right&&A[left]<=pivotKey){
               left++;
           }
           A[right]=A[left];

        }

        //把枢轴放到它真正的地方
        A[left]=pivotKey;
        return left;
    }
    //三数取中
    public int median3(int[] A,int left,int right){

        int mid=(right-left)/2;
        if(A[left]>A[right]){
            swap(A,left,right);
        }
        if(A[mid]>A[left]){
            swap(A,mid,left);
        }
        if(A[mid]>A[right]){
            swap(A,mid,right);
        }

        return A[left];
    }

    public void swap(int[] A,int i,int j){
        int temp =A[i];
        A[i]=A[j];
        A[j]=temp;
    }
}

3.7 堆排序

堆排序(Heap Sort)是利用堆进行排序的方法。其基本思想为:将待排序列构造成一个大顶堆(或小顶堆),整个序列的最大值(或最小值)就是堆顶的根结点,将根节点的值和堆数组的末尾元素交换,此时末尾元素就是最大值(或最小值),然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的次大值(或次小值),如此反复执行,最终得到一个有序序列。

Java十大排序算法

3.7.1 基本思想

将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区; 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n]; 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

3.7.2 图形

Java十大排序算法

Java十大排序算法

3.7.3 代码1

点击查看代码
public  void heapSort(int[] a){
           int len=a.length;
           //循环建堆
           for(int i=0;i<len-1;i++){
               //建堆
               buildMaxHeap(a,len-1-i);
               //交换堆顶和最后一个元素
               swap(a,0,len-1-i);
           }
       }
        //交换方法
       private  void swap(int[] data, int i, int j) {
           int tmp=data[i];
           data[i]=data[j];
           data[j]=tmp;
       }
       //对data数组从0到lastIndex建大顶堆
       private void buildMaxHeap(int[] data, int lastIndex) {
           //从lastIndex处节点(最后一个节点)的父节点开始
           for(int i=(lastIndex-1)/2;i>=0;i--){
               //k保存正在判断的节点
               int k=i;
               //如果当前k节点的子节点存在
               while(k*2+1<=lastIndex){
                   //k节点的左子节点的索引
                   int BiggerIndex=2*k+1;
                   //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
                   if(biggerIndex<lastIndex){
                       //若果右子节点的值较大
                       if(data[biggerIndex]<data[biggerIndex+1]){
                           //biggerIndex总是记录较大子节点的索引
                           biggerIndex++;
                       }
                   }
                   //如果k节点的值小于其较大的子节点的值
                   if(data[k]<data[biggerIndex]){
                       //交换他们
                       swap(data,k,biggerIndex);
                       //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
                       k=biggerIndex;
                   }else{
                       break;
                   }
               }
           }
       }

3.7.3 代码2

点击查看代码
	/**
	 * 调整堆
	 * @param array
	 * @param index
	 * @param length
	 */
	public static void heapAdjust(int[] array,int index,int length){
		//保存当前结点的下标
		int max = index;
		//当前节点左子节点的下标
		int lchild = 2*index;
		//当前节点右子节点的下标
		int rchild = 2*index + 1;
		if(length > lchild && array[max] < array[lchild]){
			max = lchild;
		}
		if(length > rchild && array[max] < array[rchild]){
			max = rchild;
		}
		//若此节点比其左右孩子的值小,就将其和最大值交换,并调整堆
		if(max != index){
			int temp = array[index];
			array[index] = array[max];
			array[max] = temp;
			heapAdjust(array,max,length);
		}
		
	}
	
	/**
	 * 堆排序
	 * @param array
	 * @return
	 */
	public static int[] heapSort(int[] array){
		int len = array.length;
		//初始化堆,构造一个最大堆
		for(int i = (len/2 - 1);i >= 0;i--){
			heapAdjust(array,i,len);
		}
		//将堆顶的元素和最后一个元素交换,并重新调整堆
		for(int i = len - 1;i > 0;i--){
			int temp = array[i];
			array[i] = array[0];
			array[0] = temp;
			
			heapAdjust(array,0,i);
		}
		return array;
	}

3.7.3 代码3

点击查看代码
	/**
	 * 调整堆
	 * @param array
	 * @param index
	 * @param length
	 */
	public static void heapAdjust(int[] array,int index,int length){
		//保存当前结点的下标
		int max = index;
		//当前节点左子节点的下标
		int lchild = 2*index;
		//当前节点右子节点的下标
		int rchild = 2*index + 1;
		if(length > lchild && array[max] < array[lchild]){
			max = lchild;
		}
		if(length > rchild && array[max] < array[rchild]){
			max = rchild;
		}
		//若此节点比其左右孩子的值小,就将其和最大值交换,并调整堆
		if(max != index){
			int temp = array[index];
			array[index] = array[max];
			array[max] = temp;
			heapAdjust(array,max,length);
		}
		
	}
	
	/**
	 * 堆排序
	 * @param array
	 * @return
	 */
	public static int[] heapSort(int[] array){
		int len = array.length;
		//初始化堆,构造一个最大堆
		for(int i = (len/2 - 1);i >= 0;i--){
			heapAdjust(array,i,len);
		}
		//将堆顶的元素和最后一个元素交换,并重新调整堆
		for(int i = len - 1;i > 0;i--){
			int temp = array[i];
			array[i] = array[0];
			array[0] = temp;
			
			heapAdjust(array,0,i);
		}
		return array;
	}

3.8 计数排序

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。 计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

3.8.1 基本思想

  • 找出待排序的数组中最大和最小的元素;
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

3.8.2 图形

Java十大排序算法

3.8.3 代码1

点击查看代码
	/**
	 * 计数排序
	 * @param array
	 * @return
	 */
	public static int[] countingSort(int[] array){
		if(array.length == 0){
			return array;
		}
		int bias ,min = array[0],max = array[0];
		//找出最小值和最大值
		for(int i = 0;i < array.length;i++){
			if(array[i] < min){
				min = array[i];
			}
			if(array[i] > max){
				max = array[i];
			}
		}
		//偏差
		bias = 0 - min;
		//新开辟一个数组
		int[] bucket = new int[max - min +1];
		//数据初始化为0
		Arrays.fill(bucket, 0);
		for(int i = 0;i < array.length;i++){
			bucket[array[i] + bias] += 1;
		}
 
		int index = 0;
		for(int i = 0;i < bucket.length;i++){
			int len = bucket[i];
			while(len > 0){
				array[index++] = i - bias;
				len --;
			}		
		}
 
		return array;
		
	}

3.8.3 代码2

点击查看代码
import java.util.*;

public class CountingSort {
    public int[] countingSort(int[] A, int n) {
        if(A==null ||n<2){
            return A;
        }
        //找出桶的范围,即通过要排序的数组的最大最小值来确定桶范围
        int min=A[0];
        int max=A[0];
        for(int i=0;i<n;i++){
            min=Math.min(A[i],min);
            max=Math.max(A[i],max);
        }
        //确定桶数组,桶的下标即为需排序数组的值,桶的值为序排序数同一组值出现的次数
        int[] arr = new int[max-min+1];
        //往桶里分配元素
        for(int i=0;i<n;i++){
            arr[A[i]-min]++;
        }

        //从桶中取出元素
        int index=0;
        for(int i=0;i<arr.length;i++){
            while(arr[i]-->0){
                A[index++]=i+min;
            }
        }

        return A;
    }
}

3.9 桶排序

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。 桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排

3.9.1 基本思想

  • 人为设置一个BucketSize,作为每个桶所能放置多少个不同数值(例如当BucketSize==5时,该桶可以存放{1,2,3,4,5}这几种数字,但是容量不限,即可以存放100个3);
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序,可以使用其它排序方法,也可以递归使用桶排序;
  • 从不是空的桶里把排好序的数据拼接起来。 注意,如果递归使用桶排序为各个桶排序,则当桶数量为1时要手动减小BucketSize增加下一循环桶的数量,否则会陷入死循环,导致内存溢出。

3.9.2 图形

Java十大排序算法

Java十大排序算法

3.9.3 代码

点击查看代码
	/**
     * 桶排序
     * 
     * @param array
     * @param bucketSize 桶中可以放多少种元素
     * @return
     */
    public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
        if (array == null || array.size() < 2)
            return array;
        int max = array.get(0), min = array.get(0);
        // 找到最大值最小值
        for (int i = 0; i < array.size(); i++) {
            if (array.get(i) > max)
                max = array.get(i);
            if (array.get(i) < min)
                min = array.get(i);
        }
        int bucketCount = (max - min) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
        ArrayList<Integer> resultArr = new ArrayList<>();
        //构造桶
        for (int i = 0; i < bucketCount; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }
        //往桶里塞元素
        for (int i = 0; i < array.size(); i++) {
            bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
        }
        for (int i = 0; i < bucketCount; i++) {
            if (bucketSize == 1) { 
                for (int j = 0; j < bucketArr.get(i).size(); j++)
                    resultArr.add(bucketArr.get(i).get(j));
            } else {
                if (bucketCount == 1)
                    bucketSize--;
                ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
                for (int j = 0; j < temp.size(); j++)
                    resultArr.add(temp.get(j));
            }
        }
        return resultArr;
    }

3.10 基数排序

基数排序也是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。

3.10.1 基本思想

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

3.10.2 图形

Java十大排序算法

Java十大排序算法

3.10.3 代码1

点击查看代码
	/**
     * 基数排序
     * @param array
     * @return
     */
    public static int[] RadixSort(int[] array) {
        if (array == null || array.length < 2)
            return array;
        // 1.先算出最大数的位数;
        int max = array[0];
        for (int i = 1; i < array.length; i++) {
            max = Math.max(max, array[i]);
        }
        int maxDigit = 0;
        while (max != 0) {
            max /= 10;
            maxDigit++;
        }
        int mod = 10, div = 1;
        ArrayList<ArrayList<Integer>> bucketList = new ArrayList<ArrayList<Integer>>();
        for(int i = 0; i < 10;i++){
        	bucketList.add(new ArrayList<Integer>());
        }
        for(int i = 0;i < maxDigit;i++,mod *= 10 ,div *= 10){
        	for(int j = 0;j < array.length;j++){
        		int num = (array[j] % mod) / div;
        		bucketList.get(num).add(array[j]);
        	}
        	int index = 0;
        	for(int j = 0;j < bucketList.size();j++){
        		for(int k = 0;k < bucketList.get(j).size();k++){
        			array[index++] = bucketList.get(j).get(k);
        		}
    			bucketList.get(j).clear();
        	}	
        }
 
        return array;
    }

3.10.3 代码2

点击查看代码
import java.util.*;
import java.lang.Math;
public class RadixSort {
    public int[] radixSort(int[] A, int n) {
        //基于桶排序的基数排序

        //确定排序的趟数,即排序数组中最大值为809时,趟数为3
         int max=A[0];
        for(int i=0;i<n;i++){
            if(A[i]>max){
                max= A[i];
            }
        }
        //算出max的位数
        int time=0;
        while(max>0){
            max/=10;
            time++;
        }
        //【桶】初始化十个链表作为桶,用户分配时暂存
        ArrayList<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
        for(int i=0;i<10;i++){
            ArrayList<Integer> Item = new ArrayList<Integer>();
            list.add(Item);
        }

        //进行time次分配和收集
        for(int i=0;i<time;i++){

            //分配元素,按照次序优先,从个位数开始
            for(int j=0;j<n;j++){
                int index = A[j]%(int)Math.pow(10,i+1)/(int)Math.pow(10,i);
                list.get(index).add(A[j]);
            }
            //收集元素,一个一个桶地收集
            int count=0;
            //10个桶
            for(int k=0;k<10;k++){
                //每个桶收集
                if(list.get(k).size()>0){

                    for(int a: list.get(k)){
                        A[count]=a;
                        count++;   
                    }
                  //清除数据,以便下次收集
                    list.get(k).clear();
                }
            }
        }
        return A; 
    }
}

4. 文章引用

十大经典排序算法总结(Java实现+动画) Java常用的八种排序算法与代码实现 十大排序算法(java实现)

脚本宝典总结

以上是脚本宝典为你收集整理的Java十大排序算法全部内容,希望文章能够帮你解决Java十大排序算法所遇到的问题。

如果觉得脚本宝典网站内容还不错,欢迎将脚本宝典推荐好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
如您有任何意见或建议可联系处理。小编QQ:384754419,请注明来意。