初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

发布时间:2022-07-01 发布网站:脚本宝典
脚本宝典收集整理的这篇文章主要介绍了初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度脚本宝典觉得挺不错的,现在分享给大家,也给大家做个参考。

目录

@R_806_1304@ 和 空间复杂度

1.算法效率

2.时间复杂度

2.1 时间复杂度的概念

2.2 大O的渐进表示法

2.3常见时间复杂度计算举例

3.空间复杂度


 

时间复杂度 和 空间复杂度

1.算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率

时间效率被称为时间复杂度空间效率被称作空间复杂度

时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

2.时间复杂度

2.1 时间复杂度的概念

        时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

2.2 大O的渐进表示法

O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法: 

1. 用常数1取代运行时间中的所有加法常数。

2. 在修改后的运行次数函数中,只保留最高阶项。

3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

另外有些算法的时间复杂度存在最好、平均和最坏情况

  1. 最坏情况:任意输入规模的最大运行次数(上界)
  2. 平均情况:任意输入规模的期望运行次数
  3. 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

               最好情况:1次找到

               最坏情况:N次找到

               平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实例1:普通循环的时间复杂度

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
    int count = 0;
    for (int i = 0; i < N ; i++) {
        for (int j = 0; j < N ; j++){
		count++;}
    }
    for (int k = 0; k < 2 * N ; k++)
    {count++;}
    int M = 10;
    while ((M--) > 0)
    {count++;}
    System.out.PRintln(count);
}

解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

 

        时间复杂度为: O(N^2) 

实例2:普通循环的时间复杂度

// 计算func2的时间复杂度?
void func2(int N) {
    int count = 0;
    for (int k = 0; k < 2 * N ; k++)
    {count++;
    }
    int M = 10;
    while ((M--) > 0)
    {count++;
    }
    System.out.println(count);
}

解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

 时间复杂度为:O(N)

实例3: 循环的时间复杂度

// 计算func3的时间复杂度?
void func3(int N, int M)
{int count = 0;
    for (int k = 0; k < M; k++)
    {count++;
    }
    for (int k = 0; k < N ; k++)
    {count++;
    }
    System.out.println(count);
}

解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

  

时间复杂度为:O(M+N)

实例4: 循环的时间复杂度

// 计算func4的时间复杂度?
void func4(int N)
{ int count = 0;
    for (int k = 0; k < 100; k++)
    {count++;
    }
    System.out.println(count);
}

 解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

时间复杂度为:O(1)

实例5: 冒泡函数的时间复杂度

  // 计算bubbleSort的时间复杂度?
    void bubbleSort(int[] array) {
        for (int end = array.length; end > 0; end--)
        {boolean sorted = true;
            for (int i = 1; i < end; i++){
            { if (array[i - 1] > array[i])
                Swap(array, i - 1, i);
                sorted = false;
            }
        }
        if (sorted == true) {
            break;
        }
    }
}

解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

 

时间复杂度为:O(N^2)

实例6: 二分查找的时间复杂度

// 计算binarySeArch的时间复杂度?
int binarySearch(int[] array, int value)
{int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
    }
    return -1;
}

解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

 

时间复杂度为:O(LOG2N)  (这里是以2为底数)

实例7:阶乘递归的时间复杂度

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
    return N < 2 ? N : factorial(N-1) * N;
}

解析图: 

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

 

 时间复杂度:O(N)

实例8:斐波拉契数列的时间复杂度

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
    return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

解析图:

初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度

         时间复杂度为:O(2^n)

3.空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

实例1:冒泡函数的空间复杂度

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--)
    {boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
            }
        }
        if (sorted == true)
        {break;
        }
    }
}

实例2:斐波拉契数列的空间复杂度

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; i++) {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

实例3:阶乘递归的空间复杂度

// 计算阶乘递归Factorial的时间复杂度?
long factorial(int N) {
    return N < 2 ? N : factorial(N - 1) * N;
}

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)

2. 实例2动态开辟了N个空间,空间复杂度为 O(N)

3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

脚本宝典总结

以上是脚本宝典为你收集整理的初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度全部内容,希望文章能够帮你解决初始Java 来自Java SE的第七节课 时间复杂度 和 空间复杂度所遇到的问题。

如果觉得脚本宝典网站内容还不错,欢迎将脚本宝典推荐好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
如您有任何意见或建议可联系处理。小编QQ:384754419,请注明来意。